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ABSTRACT

Rather early first indications arose that temporal order of pre- and postsynaptic spikes is important
in Hebbian learning (Levy and Steward, 1983). Later this was termed spike-timing dependent plas-
ticity (STDP), which refers to the observation that many synapses will decrease in strength when
the postsynaptic signal precedes the presynaptic signal (defined here as: T < 0), while they will
grow if the temporal order is reversed (thus, T > 0) (Markram et al., 1997; Magee and Johnston,
1997). T denotes the temporal interval between post- and presynaptic signals (T := tpost − tpre).
Recently we had introduced a very simple and linear algorithm for temporal sequence learning
in robots, called “ISO-learning” (Porr and Wörgötter, 2003), which reproduced the characteristic,
anti-symmetrical weight change curve found in STDP, albeit on a much longer time scale (com-
pare Fig. 1 C). Here we are setting out to implement ISO-learning in the context of a simple,
single-compartment neuron model showing that it is basically compatible with the biophysics of
synaptic plasticity. The central finding of this model is that the ISO-learning rule leads in a robust
and generic way to STDP, while the shape of the input signals distinctively influences the shape of
the weight change curve.
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Figure 1: Schematic diagram of the model. A) Components of the membrane model. The in-
set shows how to match the NMDA-conductance function ĝN (Eq. 1) with a resonator impulse
response h1. B) Components of ISO-learning. C) Typical weight change curve obtained with
ISO-learning.

Components of the membrane model: The model represents a small, non-spiking, dendritic com-
partment with a single synapse ρ1 which was assumed as the so called “plastic synapse (PS)” on
which the influence of the ISO-learning rule was tested. This synaptic connection takes the shape
of an NMDA characteristic and the conductance gN of NMDA channels was modeled by:

gN (t) = ḡN ĝN (t) = ḡN
e−t/τ1 − e−t/τ2

1 + η[Mg2+] e−γV
(1)

This slightly more complex notation is used, because we will need the normalized conductance
time functions ĝN (t) on their own below when introducing the learning rule. Parameter were
taken from the standart literture Koch (1999). The conventional membrane equation was used to
determine the momentarily existing membrane potential.
The influence of the NMDA-component on the membrane potential is dependent on the mem-
brane’s depolarization level. We assume in this model that this is determined by the post-synaptic



activity which arises from a back-propagating spike (BP-spike). Other synaptically arising influ-
ences have also been tested but cannot be described in this short paper.
Components of ISO-learning: Fig. 1 B shows the circuit diagram of rate-based ISO-learning for
only two (δ-pulse) inputs x0, x1 (for a more general description see Porr and Wörgötter 2003).
The inputs are first band-pass filtered by means of heavily damped resonators h. The transformed
inputs u0,1 = x0,1 ∗ h converge onto the learning unit with weights ρ0,1 and its output is given by
v = ρ0u0 + ρ1u1. The ISO-learning rule is given by: d

dtρ1 = µu1v
′ with µ � 1.

Associating the membrane model to ISO-learning: The band-pass filter operation h1 is represented
by the conductance function g of the plastic synapse and we define h1(t) := ĝN . Since we are
only dealing with spike trains modeled as δ-functions we get u1(t) = h1(t) = ĝN . Corresponding
curves are shown in the inset of Fig. 1 A. The output v is the membrane potential V . As a conse-
quence of these settings the learning rule of ISO-learning is rephrased in the context of this model
to:

d

dt
ρ1 = µu1v

′ = µ ĝN V ′ (2)

For the actual weight change ∆ρ obtained with one spike pair at the inputs we integrate as usual:
∆ρ1 =

∫ t
0

dρ1

dt dt. The learning rate µ takes the unit of Volt−1, because this way ∆ρ is rendered
unit-free.
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Figure 2: Weight change curves obtained with different BP-spikes as depolarization source. Top
panels show the weight change curves and bottom panels the BP-spikes with which they were
obtained, parameterized with different rise and fall-times. Panels A,B also contain one example
obtained with a BP-spike with intermediate shape This spike starts with the shape of the first
BP-spike in panel B and ends with the shape of the last spike.

Results: Fig. 2 shows 17 weight change curves and the BP-spikes with which they were obtained.
Note, (some of) these spike shapes do not necessarily reflect realistic BP-spike shapes. Instead, this
modeling exercise is meant to cover a rather complete range of composable shapes such that the
characteristics of a weight change curve resulting from any other BP-spike shape can be inferred
from this diagram.
In general, we observe that the negative part of the weight change curve dominates in most cases
across all panels, which is in accordance with physiology (Debanne et al., 1998).
By comparing the curves within each panel, it can be seen that increasing fall-times of the BP-
spike mainly lead to an increase of the positive peak of the weight change curve while the negative
peak becomes smaller but more spread out towards negative values of T .
By comparing curves across panels one can assess the influence of increasing rise-times. Here
we observe that the typical STDP-shape of the curves in panel A (zero crossing at about T =
0 ms) turns into pure Hebbian learning for values of T > −20 ms for a rather shallow rise-
time. Such shallow rise-times may indeed occur at distal dendrites where - discounting possible
active processes - the membrane capacitance has smeared out a BP-spike substantially (Magee and
Johnston, 1997). This result is of some theoretical interest, because it shows that we do not have
to alter the learning rule in order to get either differential- (STDP-like curve) or plain-Hebbian
(unimodal curve) learning. A changing input characteristic will do the trick already.



The one example of a BP-spike with intermediate shape (panels A,B) shows - quite expectedly
so - that gradual spike-shape transitions will also lead to gradual transitions of the shape of the
weight change curves. This supports the notion that other shapes of weight change curves can be
basically inferred from these examples.
Let us also consider the influence of different resting potentials which will affect the NMDA
channel. Fig. 3 A shows that this influence is rather weak. This is due to the fact that the tran-
sient depolarization coming from the BP-spike now dominates the artificially introduced tonic
depolarization of the resting membrane level.
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Figure 3: Learning curves obtained with different resting membrane potentials (A) or different
NMDA characteristics (B,C). A) Influence of the resting potential indicated by the labels on the
curves. B) conductance of the NMDA synapse at +40 mV voltage clamp. C) Weight change
curves.

It is known that during development the relative frequency of different NMDA receptor types
(NMDARA versus NMDARB) changes. This influences the electrophysiological properties of the
NMDA-channel. Fig. 3 A,B shows three different NMDA-characteristics, the steepest reflecting
an adult stage. The other two stages are observed during development at postnatal days 26-29
(τdecay = 189 ms) and 37-38 (τdecay = 380 ms) in ferret. The single decay values for τdecay
were taken from Roberts and Ramoa (1999), but we still modeled the NMDA characteristic using
Eq. 1 by fitting our two τ -values to yield the curves reported in the report of Roberts & Ramoa. To
obtain the weight change curves we used a BP-spike with short rise-time and medium fall-time.
Interestingly we observe that both “young” NMDA-synapses yield rather asymmetrical weight
change curves with a strongly dominated LTD part. To our knowledge so far very little is known
about the actual physiological learning characteristics of early synapses. There are, however,
indications that synaptic elimination dominates the early developmental stages. The theoretical
results obtained with our learning rule would possibly point towards this direction.
Discussion - Relations to Biophysics: The learning rule consists of two components. In most
cases, the membrane potential is strongly dominated by the shape of the BP-spike at the mo-
ment of pairing, while the contribution of the plastic synapse (or other synapses) can be neglected.
This makes V ′ a post-synaptic quantity. Given that V ′ = I

C , we note that the learning rule can
be rewritten also as dρ

dt = µ
C ĝ

dQ
dt . This shows that charge transfer dQ

dt across the (post-synaptic)
membrane is a major driving force of learning and it seems reasonable to assume that part of
dQ
dt represents the calcium flow. As the first term of the learning rule, we have used the normal-

ized NMDA conductance function ĝN , which, thus, represents the band-pass filtered input u1 of
ISO-learning’s response to a δ-pulse input. We would argue that ĝN essentially subsumes the time-
course of all processes which occur for an NMDA receptor outside or directly at the membrane;
thus all pre-synaptic events. Thus, our learning rule uses a product of a pre-synaptic (ĝ) and a
post-synaptic (V ′) influence.
In summary, our model falls in-between the rather abstract models of, for example, (Gerstner et al.,
1996; Song et al., 2000; Rubin et al., 2001) and the more kinetically oriented models of (Senn et al.,
2000; Castellani et al., 2001; Karmarkar and Buonomano, 2002; Shouval et al., 2002). We believe
that this study may help to further our understanding of more complex (compartmentalized and/or
kinetic) models because the question of how a certain STDP curve arises is reduced to the question
of how the cellular parameters lead to the underlying input signal shapes.
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